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Several subsampling-based normalization strategies were applied to different high-throughput sequencing
data sets originating from human and murine gut environments. Their effects on the data sets’ characteristics
and normalization efficiencies, as measured by several �-diversity metrics, were compared. For both data sets,
subsampling to the median rather than the minimum number appeared to improve the analysis.

The high-throughput sequencing of tagged hypervariable re-
gions of the bacterial 16S rRNA genes is rapidly becoming one
of the methods of choice in the analysis of complex microbial
communities (10). Due to technical reasons (e.g., imperfect
pooling prior to sequencing and/or stochastic events during
sequencing [4]) or when comparing samples from different
sequencing rounds, the amounts of sequences obtained per
sample/tag differ. Furthermore, as the coverage for a given
sample increases, sequences are added arithmetically, but the
number of operational taxonomic units (OTUs) increases at a
decreasing, logarithmic pace. For these reasons, a normaliza-
tion step prior to analysis is widely used to standardize sam-
pling efforts and bring the data from different samples onto a
common scale. One way to handle this issue is to randomly
subsample each community to a common depth, a procedure
often referred to as rarefaction. Rarefaction approaches have
commonly been used in ecology to evaluate sampling effort and
community richness (1, 3) and more recently with �-diversity
measures (5). Rarefaction is also included as a normalization
step in widely used microbial community analysis pipelines,
such as QIIME (2).

Recent papers using subsampling as a normalization step
prior to �-diversity analysis have reported subsampling to the
lowest number of sequences produced from any sample (5) or
even less (7), while others appear to have used arbitrarily
defined thresholds (6). The rationale behind subsampling
depth choice is generally unreported but presumably strives to
strike a compromise between information loss and data set
balance. Even though decreasing the subsampling depth can
improve a data set’s balance, it could also lead to the subop-
timal use of the information contained in the data set. The
trade-off between number of samples and depth of coverage,
together with the performance of different analytical tech-
niques, has recently been explored (5a). However, to the best
of our knowledge, there does not appear to have been a sys-
tematic evaluation of the relationships between the depth of

subsampling as a normalization strategy with information loss,
data set balance, and efficacy for the analysis of tagged high-
throughput sequencing data sets. We describe here our com-
parison of the normalization efficiency of different subsampling
depths and a recodification strategy (recoding singletons as
zeros) on the �-diversity measures produced from two different
data sets derived from gut microbiomes.

Two different data sets generated in our laboratory were
used for these studies. One was produced from human colon
mucosa biopsy specimens (data set Q; 40 samples, 455,660
sequences), and the second was produced from mice cecal
mucosa and fecal samples (data set D; 46 samples, 194,663
sequences). Both sample sets were processed independently.
Each sample was tagged and amplified in triplicate (thus three
different technical replicates, each with a different tag, were
generated for each sample) using primers flanking the V1 to
V3 regions of the bacterial rrs gene. Equimolar amounts of
each replicate were pooled and sequenced using a Roche 454
FLX sequencer with titanium chemistry. The sequences ob-
tained were processed using QIIME; sequences were assigned
to samples using the tag information, filtered for correct length
and quality thresholds, and grouped in OTUs at a 0.97 distance
threshold. Those OTUs not appearing in at least two replicates
across the data set were discarded to eliminate noise and
possible artifacts. Some tags failed to provide a significant
number of sequences and were eliminated from further anal-
ysis.

The resulting data sets were normalized using the following
strategies: (i) rarefaction (Rare), randomly subsampling each
sample to a common depth; (ii) rarefaction and recodification
(Rare�Recode), the same as Rare but deletes singletons (i.e.,
recoding 1 as zero); (iii) multiple rarefaction (MultiRare),
which randomly subsamples each sample to a common depth
100 times and then uses the average; and (iv) multiple rarefac-
tion and recodification (MultiRare�Recode), which is the
same as MultiRare but recodes values lower than 1.01 as zero.
The subsampling depths employed were based on the data sets’
characteristics (quartiles): (i) initial, no subsampling; (ii) 75%,
subsampling to the higher quartile; (iii) 50%, subsampling to
the median; (iv) 25%, subsampling to the lower quartile; and
(v) Min, subsampling to the smallest coverage in the data set.
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In all cases, replicates possessing fewer sequences than the
subsampling threshold were kept as they were.

It could be expected that a comparison of sequences ob-
tained from replicates taken from a given sample would show
similarity (not accounting for technical noise). Therefore, the
most effective normalization approach would be the one that
exhibits the least distance between replicates from the same
sample. For each combination and strategy of subsampling
depth, we generated between-replicate distance (or other met-
rics) matrices using the Euclidean, Bray-Curtis, unweighted
UniFrac (8), and Rao diversity (9) measures using several R
packages (Vegan, Ade4, Picante). Then, for each replicate, we
obtained a resolution value: the ratio (Rt) of average distance
(or other metric) to the replicates from the same sample (av-
erage within-sample distance) divided by the average distance
to all the replicates in the data set (average distance to all
replicates). Next, the average of the Rt values obtained for
each particular strategy combination and subsampling depth
was adopted as a proxy of its resolution (Rt � average within-
sample distance/average distance to all replicates; the lower
the number, the greater the resolution), and the results were
plotted. The observed differences between selected strategies
were statistically tested by comparing the Rt values for each
replicate on a paired two-sided Wilcox test (to maintain within-
sample independence, one replicate per sample was removed
from the analysis; � � 0.05, n � 91 and 74 samples for data sets
D and Q, respectively) using R packages.

Table 1 shows that the different normalization approaches
had similar effects on the distributions of both data sets; aver-
age sequences per replicate (or total number of sequences)
and their standard deviations serve as proxies for total infor-
mation and balance of the data sets, respectively. There was a
constant decrease in total sequences and sequences per repli-
cate with decreasing subsampling depth (Table 1), with a con-
comitant decrease of the standard deviation (increased bal-
ance) until the minimum depth, when the decrease was
sharpest. In comparison to subsampling to the same depth, the
addition of the recodification strategy did not exhibit much of
an effect on the amount of sequences per sample but strongly
reduced the number of OTUs in the data sets. It was also
observed that elevating the recodification threshold translated
into an increasingly greater loss of data (unpublished data).
The multiple rarefaction strategies behaved in a manner sim-
ilar to that of the single rarefaction strategies, except that the
former did not decrease the number of total OTUs with de-
creasing subsampling depth. This was because the samples’
values for such OTUs where abundances were below 1.01
were retained, since such an effect disappears in the
MultiRare�Recode approach.

The effects of the different normalization approaches em-
ployed on resolution were concordant in both data sets (Fig.
1). The results based on Euclidean distances showed no effects
due to the recodifications applied, and there was a trend of
increased resolution with decreasing depth up to the 50%

TABLE 1. Effect of the different strategies on the distributions of the data setsa

Strategy

Data set Q Data set D

No. of
OTUs

No. of sequences/
replicate � SD

Total no. of
sequences

No. of
OTUs

No. of sequences/
replicate � SD

Total no. of
sequences

Total 3,091 3,997 � 2,116 455,660 17,015 1,421 � 626 194,663
Initial 2,042 3,981 � 2,103 453,941 7,120 1,327 � 579 181,860
Rare 75% 2,037 3,514 � 1,225 400,592 7,115 1,243 � 439 170,255
MultiRare1 75% 2,042 3,514 � 1,224 400,592 7,120 1,243 � 439 170,255
Rare�Recode1 75% 1,628 3,421 � 1,218 390,005 4,079 954 � 361 130,696
MultiRare�Recode1 75% 1,669 3,426 � 1,225 390,587 4,228 960 � 369 131,587
Rare�Recode2 75% 1,628 3,421 � 1,218 390,005 3,913 1,123 � 476 153,981
Rare�Recode5 75% 928 3,218 � 1,195 366,900 885 742 � 379 101,708
Rare�Recode10 75% 560 2,999 � 1,163 341,969 293 511 � 310 70,080
Rare 50% 2,020 2,755 � 430 314,057 7,040 1,057 � 268 144,853
MultiRare1 50% 2,042 2,755 � 430 314,057 7,120 1,057 � 268 144,853
Rare�Recode1 50% 1,520 2,665 � 427 303,821 3,635 789 � 212 108,048
MultiRare�Recode1 50% 1,591 2,673 � 432 304,773 4,188 812 � 228 111,281
Rare�Recode2 50% 1,520 2,665 � 426 303,821 3,656 789 � 212 108,152
Rare�Recode5 50% 809 2,474 � 422 282,094 705 490 � 160 67,236
Rare�Recode10 50% 461 2,280 � 430 259,993 236 310 � 129 42,540
Rare 25% 2,004 2,477 � 293 282,345 6,642 744 � 78 101,983
MultiRare1 25% 2,042 2,477 � 293 282,345 7,120 744 � 78 101,983
Rare�Recode1 25% 1,456 2,388 � 289 272,263 2,763 520 � 70 71,294
MultiRare�Recode1 25% 1,530 2,397 � 292 273,289 3,377 537 � 79 73,637
Rare�Recode2 25% 1,456 2,388 � 289 272,263 2,763 520 � 70 71,294
Rare�Recode5 25% 757 2,206 � 289 251,577 464 295 � 65 40,483
Rare�Recode10 25% 421 2,021 � 304 230,441 174 163 � 59 23,059
Rare Min 1,476 450 � 0 51,300 5,696 435 � 0 59,595
MultiRare1 Min 2,042 451 � 0 51,414 7,120 439 � 0 60,139
Rare�Recode1 Min 712 397 � 19 45,220 1,748 269 � 31 36,873
MultiRare�Recode Min 639 393 � 21 44,779 1,918 272 � 42 37,331
Rare�Recode2 Min 712 396 � 19 45,220 1,747 269 � 31 36,873
Rare�Recode5 Min 245 323 � 40 36,912 267 199 � 32 17,771
Rare�Recode10 Min 112 265 � 51 30,258 103 60 � 29 8,295

a In the case of the MultiRare strategies, sequence values are based on averages of the iterations. SD, standard deviation.
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depth in the case of single rarefaction or even lower in the case
of the MultiRare strategies. The Bray-Curtis dissimilarity re-
sults showed a similar behavior, except that for data set D
(having many more OTUs but fewer sequences per replicate),
the recodification strategies seem to have improved the reso-
lution. The results using the unweighted UniFrac metric show
an increased resolution related to the depth of subsampling
only for the recodification strategies. Regarding the Rao di-
versity, no changes were observed for the multiple rarefaction
approach. Both recodification strategies seemed to improve
resolution initially and then drastically reduced it, although the
coverage quartile at which the phenomenon occurred was dif-
ferent for the two data sets. Normal rarefaction improved
resolution when subsampling to the median in both data sets,
but no further improvements were observed with further sub-
sampling depth.

The differences observed using the different metrics arise
from their different characteristics: the Euclidean distance is
more affected by extreme values but relatively insensitive to
small changes in absolute abundance, hence the observed null
effect of recoding on the resolution. The Bray-Curtis dissimi-
larity does not suffer from the double zero problem and gives
equal weight to all species and samples, which might explain
the increased resolution caused by the recodification strategies
compared to that observed for the Euclidean distance. The
unweighted UniFrac and Rao diversity measures take into
account the phylogenetic information of each OTU; it is there-
fore the overall phylogenetic resemblance between samples
that matters. However, the unweighted UniFrac takes into
account only presence/absence data, explaining the null effect
of subsampling if not accompanied by a recodification step.
The Rao diversity is a weighted measure and thus benefited
from some degree of subsampling.

In summation, our results suggest that subsampling to the
minimum as a normalization strategy did not perform partic-
ularly well, with data sets presenting some degree of coverage

heterogeneity. On the other hand, subsampling to the median
in all cases either improved the analysis or had no effect but
still retained a larger proportion of the initial sequences. It also
seems that the recodification strategy was worth applying,
because it did not reduce the resolution of the analysis and
in several instances improved it. In this sense, the
MultiRare�Recode 50% strategy in most cases substantially
(P � 0.05) improved the resolution of the analyses of both data
sets compared to both the initial and RareMin strategies, using
the four metrics. The exceptions were limited to Rao diversity
measurements, where only the MultiRare�Recode 50% strat-
egy was significantly different from the RareMin strategy in
data set D. For these reasons, the subsampling strategy should
be carefully considered and described when analyzing data sets
comprised of samples produced from different sequencing runs
and/or that have significant differences in sample coverage.
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